概率论与数理统计——概率论的基本概念(专业科目理工学数学1)
主要测查应试者对随机试验、样本空间、随机事件、事件的关系与运算、频率与概率、概率的性质、古典概型、几何概型、条件概率、全概率公式和贝叶斯公式、事件的独立性的掌握程度。
要求应试者理解随机试验、样本空间、随机事件、频率、概率、条件概率、事件的独立性等概念,掌握事件的关系与运算、频率和概率的性质、全概率公式、贝叶斯公式等基本理论与基本方法;会利用事件的独立性计算概率;了解几何概型。
本章内容主要包括样本空间、频率与概率、等可能概型、条件概率、独立性。
第一节 样本空间
一、样本空间
随机试验;样本空间。
二、随机事件
随机事件;事件发生;基本事件;必然事件;不可能事件。
三、事件的关系与运算
事件的相等;事件的和;事件的积;事件的差;不相容(互斥)事件;对立事件;事件运算的交换律、结合律、分配律、德摩根律。
第二节 频率与概率
一、频率
频数;频率;频率的基本性质。
二、概率
概率的定义;非负性;规范性;可列可加性;有限可加性;对立事件的概率;加法公式。
第三节 等可能概型
一、等可能概型
等可能概型;等可能概型的计算;几何概型。
二、抽样方式
放回抽样;不放回抽样。
三、实际推断原理
实际推断原理;实际推断原理的应用。
第四节 条件概率
一、条件概率
条件概率;乘法定理。
二、全概率公式和贝叶斯公式
样本空间的划分;全概率公式;贝叶斯公式;先验概率;后验概率。
第五节 独立性
一、两个事件相互独立
两个事件相互独立性;相互独立事件的性质。
二、多个事件相互独立
多个事件相互独立性;多个事件相互独立性的应用。