厦门专业科目

首页 > 福建军队文职考试 > 备考技巧 > 专业科目

2020军队文职专业科目理工学考点:矩阵的相似化简

华图教育 | 2020-06-01 10:39

收藏

  线性代数——矩阵的相似化简(专业科目理工学)

  主要测查应试者对矩阵的特征值理论、相似矩阵、实对称矩阵对角化理论的掌握程度。要求应试者理解矩阵的特征值和特征向量、相似矩阵等概念,掌握矩阵特征值的性质,矩阵的特征值和特征向量的计算、矩阵可相似对角化的充分必要条件、将矩阵化为相似对角矩阵的方法、实对称矩阵的特征值和特征向量的性质等基本理论和基本方法。

  本章内容主要包括特征值与特征向量、矩阵的相似对角化、实对称矩阵的对角化。

  第一节 特征值与特征向量

  一、特征值与特征向量的概念

  特征值、特征向量;特征多项式;特征方程。

  二、特征值与特征向量的性质和计算

  特征值和特征向量的性质;特征值和特征向量的计算;矩阵的迹;矩阵的特征值与矩阵的关系;相异特征值对应的特征向量。

  三、相似矩阵的概念和性质

  相似矩阵;相似变换;相似矩阵的性质;相似矩阵的特征值和迹。

  第二节 矩阵的相似对角化

  一、相似对角化的条件和方法

  矩阵的对角化;n 阶矩阵可对角化的充要条件;n 阶矩阵可对角化的充分条件;n 阶矩阵

  相似对角化的步骤。

  二、可对角化矩阵的多项式

  对角矩阵的幂;可对角化矩阵的多项式。

  第三节 实对称矩阵的对角化

  一、实对称矩阵的特征值与特征向量

  实对称矩阵的特征值及特征向量的性质;实对称矩阵的相似正交对角化。

分享到

微信咨询

微信中长按识别二维码 咨询客服

全部资讯

copyright ©2006-2020 华图教育版权所有